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2 Photochemistry in an Exoplanet Atmosphere

Abstract

Photochemistry is a fundamental process of planetary atmo-
spheres that is integral to habitability, atmospheric composition
and stability, and aerosol formation [1]. However, no unambigu-
ous photochemical products have been detected in exoplanet
atmospheres to date. Here we show that photochemically pro-
duced sulphur dioxide (SO2) is present in the atmosphere of the
hot, giant exoplanet WASP-39b, as constrained by data from
the JWST Transiting Exoplanet Early Release Science Pro-
gram [2, 3] and informed by a suite of photochemical models.
We find that SO2 is produced by successive oxidation of sul-
phur radicals freed when hydrogen sulphide (H2S) is destroyed.
The SO2 distribution computed by the photochemical mod-
els robustly explains the 4.05 µm spectral feature seen in
JWST transmission spectra [4] [Rustamkulov et al.(submitted),
Alderson et al.(submitted)] and leads to observable features at
ultraviolet and thermal infrared wavelengths not available from
the current observations. The sensitivity of the SO2 feature to
the enrichment of heavy elements in the atmosphere (“metal-
licity”) suggests that it can be used as a powerful tracer of
atmospheric properties, with our results implying a metallic-
ity of ∼10× solar for WASP-39b. Through providing improved
constraints on bulk metallicity and sulphur abundance, the
detection of SO2 opens a new avenue for the investigation of
giant-planet formation. Our work demonstrates that sulphur
photochemistry may be readily observable for exoplanets with
super-solar metallicity and equilibrium temperatures &750
K. The confirmation of photochemistry through the agree-
ment between theoretical predictions and observational data
is pivotal for further atmospheric characterisation studies.

WASP-39b is a 1.27-Jupiter-radii, Saturn-mass (0.28 MJ) gas giant exoplanet
with an equilibrium temperature of ∼1100 K [5], typical of the class of “hot
Jupiter” exoplanets. Its host star, WASP-39 (G8 type), has a solar-like metal-
licity ([Fe/H] = −0.01± 0.04) and carbon-to-oxygen (C/O) ratio (0.46±0.09)
[6]. JWST observed WASP-39b as part of its Transiting Exoplanet Early
Release Science Program (ERS Program 1366), with the goal of elucidating
its atmospheric composition [2, 3]. Data from the NIRSpec PRISM and NIR-
Spec G395H instrument modes revealed a distinct absorption feature between
4.0 and 4.2 µm, peaking at around 4.05 µm that could not be explained
by atmospheric radiative-convective-thermochemical equilibrium models with
metallicity and C/O values typically assumed of gas giant planets orbit-
ing Sun-like stars (1–100× Solar and 0.3–0.9, respectively; [Rustamkulov et
al.(submitted), Alderson et al.(submitted)]). A search for gases with absorption
features at wavelengths similar to that of the observed feature revealed sulphur
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Photochemistry in an Exoplanet Atmosphere 3

dioxide (SO2) as a possible candidate, although its presence and abundance
were not yet supported by physics and chemistry models.

Sulphur shares some chemical similarities to oxygen but uniquely forms var-
ious compounds with a wide range of oxidation states (-2 to +6; [7]). While SO2

is ubiquitously outgassed and associated with volcanism on terrestrial worlds
(e.g., Earth, Venus, and Jupiter’s satellite Io), the source of SO2 is fundamen-
tally different on gas giants. Under thermochemical equilibrium in the deep
atmosphere, sulphur chiefly exists in the reduced form, such that hydrogen sul-
phide (H2S) is the primary sulphur reservoir in a hydrogen/helium-dominated
gas giant [8–11]. At the temperature of WASP-39b, the equilibrium mixing
ratio of SO2 in the observable part of the atmosphere is less than ∼ 10−12

for 10× solar metallicity and less than ∼ 10−9 for even 100× solar metallic-
ity (see Extended Data Fig. 1). This equilibrium abundance of SO2 is several
orders of magnitude smaller than the values needed to produce the spectral
feature observed by JWST (volume mixing ratios of 10−6–10−5) [Rustamkulov
et al.(submitted), Alderson et al.(submitted)]. In contrast, under UV irradia-
tion, SO2 can be oxidised from H2S as a photochemical product. H and OH
radicals, generated by photolysis processes, are key to liberating SH radicals
and atomic S from H2S and subsequently oxidising them to SO and SO2. While
previous photochemical modelling studies have shown that substantial SO2

can be produced in hydrogen-rich exoplanet atmospheres in this way [10, 12–
14], the extent to which such a model could reproduce the current WASP-39b
observations remained unverified.

We have performed several independent1, cloud-free 1D photochemical
model calculations of WASP-39b using the ATMO2, ARGO, KINETICS and
VULCAN codes (see Methods for model details). All models included sulphur
kinetic chemical networks and were run using the same vertical temperature-
pressure profiles of the eastern and western terminators adopted from a 3D
WASP-39b atmospheric simulation with the Exo-FMS general circulation
model (GCM; see Extended Data Figs. 2 and 3) [16]. Atmospheric mixing was
parameterised using eddy diffusion coefficients based on the averaged vertical
wind from the GCM. The spectrum of the star, WASP-39, extending through
the ultraviolet and X-ray region, was obtained by combining observed WASP-
39 spectra in the optical (295 – 700 nm) with constructed spectra at shorter
wavelengths composed of different NUV (230 – 295 nm) and XUV/FUV (<230
nm) components from stars with similar spectral types and activity indicators
(Extended Data Fig. 3). We computed the transmission spectra derived from
our photochemical model results using gCMCRT [17] and the ExoAmes high-
temperature SO2 line list [18]. The nominal models assumed a metallicity of
10× solar [19] with a solar C/O ratio (C/O = 0.55) while we explored the
sensitivity to atmospheric properties.

1Different chemical networks, kinetics data, and numerical design.
2Adopting the thermal kinetics from VULCAN’s C–H–N–O–S network (https://github.com/

exoclime/VULCAN/blob/master/thermo/SNCHO photo network.txt) and the photochemistry
scheme in [15] with additional photolysis for sulphur species.

https://github.com/exoclime/VULCAN/blob/master/thermo/SNCHO_photo_network.txt
https://github.com/exoclime/VULCAN/blob/master/thermo/SNCHO_photo_network.txt
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Fig. 1 The spread of the vertical distribution of CO2, SO2, and several key
sulphur species at the limbs predicted by photochemical models. The colour-
shaded areas indicate the span (enclosed by the maximum and minimum values) of volume
mixing ratios (VMR) of CO2 (blue), SO2 (pink with black borders), and other key sulphur
species (H2S: orange; S: yellow; S2: grey; and SO: light blue) computed by an ensemble of
photochemical models (ARGO, ATMO, KINETICS, and VULCAN) for the morning (top)
and evening (bottom) terminators. The thermochemical equilibrium VMRs are indicated
by the dotted lines, with SO2 not within the x-axis range due to its very low abundance
in thermochemical equilibrium. The range bar on the right represents the main pressure
ranges of the atmosphere probed by JWST NIRSpec spectroscopy. Photochemistry produces
SO2 and other sulphur species above the 1 mbar level with abundances several orders of
magnitude greater than those predicted by thermochemical equilibrium.

The peak mixing ratios of the major sulphur species produced by the dif-
ferent photochemical models are largely consistent with each other to within
an order of magnitude, as shown in Figure 1. The SO2 mixing ratio profiles are
highly variable with altitude and strongly peaked at 0.01–1 mbar with a value
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of 10–100 ppm. SO2 (along with CO2) is more favoured at the colder morning
terminator (see Methods for the circulation induced temperature differences
between the two terminators) where H2S is less stable against reaction with
atomic H at depth (with SO2 abundance peak of 50–90 ppm at the morn-
ing terminator and 15–30 ppm at the evening terminator). While the peak
SO2 abundance from the photochemical models is greater than that estimated
from fitting to the PRISM and G395H data, which assumed vertically constant
mixing ratios of ≈1–10 ppm and ≈2.5–4.6 ppm, respectively, the column inte-
grated number densities above 10 mbar are highly consistent (see Methods).
Our models indicate that S, S2, and SO, which are precursors of SO2, also
reach high abundances in the upper atmosphere above the pressure level where
H2S is destroyed. Nevertheless, they are not expected to manifest observable
spectral features in the PRISM/G395H wavelength range.
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Fig. 2 A simplified schematic illustration of the chemical pathways of sulphur
species. H2S, which is the stable sulphur-bearing molecule at thermochemical equilibrium in
an H2 atmosphere, readily reacts with atomic H to form SH radicals and subsequently atomic
S in the photochemical region (above ∼ 0.1 mbar). Reaction of S with photochemically-
generated OH then produces SO, which is further oxidized to SO2. The thick arrows denote
efficient reactions and M denotes any third body. Inefficient reactions and inactive paths in
the temperature regime of WASP-39b are greyed out. The cyan arrows mark the main path
from H2S to SO2 whereas the orange arrows mark the path important at higher pressures.
Sulphur species are colour-coded by the oxidation states of S. Rectangles indicate stable
molecules while ovals indicate free radicals.

The important pathways of sulphur kinetics in WASP-39b’s atmosphere
from our models are summarised in Figure 2. The photochemical production
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paths of SO2 from H2S around the SO2 peak are as follows:

H2O
hν−−→ OH + H

H2O + H −−→ OH + H2

H2S + H −−→ SH + H2

SH + H −−→ S + H2

S + OH −−→ SO + H

SO + OH −−→ SO2 + H

net : H2S + 2 H2O −−→ SO2 + 3 H2

(1)

Water photolysis in (1) is an important source of atomic H that initiates the
pathway. The last step of oxidising SO into SO2 is generally the rate-limiting
step. The oxidisation of SO and photolysis of SO2 account for the main sources
and sinks of SO2, which lead to altitude-varying distribution that peaks around
0.1 mbar (see Extended Data Fig. 4). At high pressures, reactions involving
S2 become important in oxidising S with less available OH, which is more
important in the morning limb where the SO2 production extends deeper to
around 10 mbar. For example, the S and SH first react to form S2 by SH +
S −−→ H + S2 before getting oxidised through S2 + OH −−→ SO + SH. The
scheme is similar to (1) except SH plays the role of catalyst to oxidise S into
SO while SO can also self-react to form SO2 in this regime3. The growth of
elemental sulphur allotropes effectively stops at S2 for temperatures higher
than ∼ 750 K [12, 14].

Figure 3 shows the morning/evening averaged transmission spectra result-
ing from the different photochemical models. All models are able to reproduce
the strength and shape of the 4.05 µm SO2 feature seen in the NIRSpec PRISM
and G395H modes, although the SO2 feature appears slightly weaker in the
G395H mode. The scatter in the model spectra is on par with the uncertain-
ties of the data, and is attributed to the spread in the vertical VMR structure
of SO2 and CO2 produced by each model (Fig. 1). Also shown in Fig. 3 are the
predicted spectra in the MIRI LRS wavelength range (5–12 µm), which exhibit
prominent SO2 features around 7.5 µm and 8.8 µm as well as an upward slope
redward of 12 µm due to CO2. In addition, our models predict a strong UV
(0.2–0.38 µm) transmission signal from the presence of S species: H2S, S2, SO2,
and SH produce a sharp opacity gradient shortward of 0.38 µm (Extended data
Fig. 7). The discrepancy between the models and previous HST STIS and VLT
FORS2 observations [21] (see Fig. 3) within 0.38–0.5 µm could be potentially
due to enhanced UV opacities at high temperatures and/or aerosol particles.
Further characterization of the sulphur species spectral features in the UV
is promising with the scheduled HST/UVIS observation (Program 17162, PIs
Rustamkulov & Sing).

3We note that the paths presented in this section are based on VULCAN output. While detailed
reactions might differ between different photochemical models, the major paths remain robust.
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Fig. 3 Morning and evening terminator averaged theoretical transmission spec-
tra generated from 1D photochemical model results. Top left: Comparison to the
NIRSpec PRISM FIREFly reduction (Rustamkulov et al.(submitted)). Top right: Compar-
ison to the NIRSpec G395H weighted-mean reduction (Alderson et al.(submitted)). Bottom
left: Comparison to the current HST and VLT/FORS2 optical wavelength data [20, 21], the
models show pronounced features at UV wavelengths due to sulphur species compared to
the model without S bearing species (dashed blue line). Bottom right: Predicted spectra
across the MIRI LRS wavelength range.

SO2 has recently been suggested as a promising tracer of metallicity in
giant exoplanet atmospheres [22]. In order to evaluate the robustness of our
photochemical models and reveal trends in atmospheric properties, we have
conducted sensitivity tests using VULCAN where we vary the atmospheric
metallicity, temperature, and vertical mixing (see Methods for details and fur-
ther tests on C/O and stellar UV flux). The left panel of Figure 4 summarises
these results for SO2, along with H2O and CO2, which are more commonly
used as proxies for atmospheric metallicity [10, 23–25]. Overall, the average
abundance of SO2 in the pressure region relevant for such observation is not
strongly sensitive to temperature or vertical mixing once SO2 has reached
observable ppm levels and is mildly sensitive to C/O (see Extended Fig. 5). In
contrast, SO2 shows an either similar or stronger dependence on metallicity,
compared to H2O and CO2. This sensitivity to metallicity can be understood
from the net reaction (1), where it takes one molecule of H2S and two molecules
of H2O to make one SO2. While SO2 can be further oxidised into SO3, which
requires additional oxygen, SO3 is rarely produced to an observable level in an
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Fig. 4 The metallicity trends for H2O, CO2, SO2 and the synthetic spectra of
WASP-39b with varying metallicity. The left panel shows the averaged VMR in the
atmosphere between 10 and 0.01 mbar probed by transmission spectroscopy as a function
of atmospheric metallicity. The nominal model is shown in solid lines, whereas the eddy
diffusion coefficient (Kzz) scaled by 0.1 and 10 are shown in dashed and dashed-dotted
lines, respectively. The models with the whole temperature increased and decreased by
50 K are indicated by the upward and downward facing triangles connected by dotted
lines respectively. The right panel displays the morning and evening terminator-averaged
theoretical transmission spectra with different metallicities (relative to solar value) compared
with the NIRSpec observation.

H2-dominated atmosphere. Therefore, SO2 can be an ideal tracer of heavy ele-
ment enrichment for giant planets, with given constraints on the temperature
and stellar FUV flux. The applicability of SO2 as a tracer of metallicity is fur-
ther shown in the right panel of Figure 4, where the increase in the SO2 feature
amplitude between 5× and 20× solar metallicity is much greater than that of
CO2 and H2O. As such, retrieval analyses seeking to evaluate the atmospheric
metallicity of warm giant exoplanets can substantially benefit from both CO2

and SO2 measurements.
Our results demonstrate the importance of considering photochemistry—

and sulphur chemistry in particular—in warm exoplanet atmospheres when
interpreting exoplanet atmospheric observations. Exoplanet photochemistry
has been investigated using numerical models since the detection of an atmo-
sphere on a transiting exoplanet [26, 27]. A diverse set of subsequent studies
elucidated the interplay of carbon, oxygen, nitrogen, hydrogen, and sulphur
under the action of high energy photons for a variety of planet classes [e.g.
12, 14, 28–34]. These works have shown that hydrocarbons, cyanides or nitriles,
and other organic compounds, along with sulphur oxides are likely present
and potentially observable in warm exoplanet atmospheres. It has been further
pointed out that sulphur can impact other nonsulphur species, such as atomic
H, CH4, and NH3 ([13, 14]; also see Extended Fig. 6). A transition in photo-
chemical production of sulphur allotropes to sulphur oxides as temperatures
increase past ∼750 K has been theoretically predicted [12, 14], with observable
features in the UV (Fig. 3 and Extended Fig. 7). At temperatures higher than
that of WASP-39b, SH and SO may become relatively more abundant than
SO2 [10, 13, 14]. Observing these compositional variations with temperature in
H2-dominated atmospheres, modulated by the atmospheric metallicity, could
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substantially improve our understanding of high-temperature chemical net-
works and atmospheric properties. While the suite of photochemical models in
this study shows consistent results and can robustly explain the observed sul-
phur feature, the observational effort should also be complemented by a more
accurate determination of key chemical reaction rate constants and UV cross
sections at the relevant temperatures [e.g., 35, 36] as well as photochemical
modelling develop beyond 1D that include horizontal transport [e.g., 37, 38].

The accessibility of sulphur species in exoplanet atmospheres through the
aid of photochemistry allows for a new window into planet formation pro-
cesses, whereas in the Solar System gas giants, the temperature is sufficiently
low that sulphur is condensed out as either H2S clouds or together with NH3

as ammonium hydrosulphide (NH4SH) clouds [39] making it more difficult to
observe. Sulphur has been detected in protoplanetary discs [40] where it may
be primarily in refractory form [41]. As such, sulphur may not undergo the
level of processing inherent in the evolution of more volatile species, making
it a preferred reference element when tracing the formation history of solar
system objects through analysis of elemental ratios [42–44]. Such efforts for
warm giant exoplanets are now a possibility thanks to the observability of pho-
tochemically produced SO2 [45]. The improved constraints on bulk planetary
metallicity provided by the observable SO2 feature further provides informa-
tion on planet formation histories such as the accretion of solid material [46].
Thus, the detection of SO2 offers valuable new insights into planet formation.

Data Availability. The data used in this paper are associated with JWST
program ERS 1366 and are available from the Mikulski Archive for Space
Telescopes (https://mast.stsci.edu).

Code Availability.
The codes VULCAN and gCMCRT used in this work to simulate
composition and produce synthetic spectra are publicly available:
VULCAN[14, 47] (https://github.com/exoclime/VULCAN)
gCMCRT[17] (https://github.com/ELeeAstro/gCMCRT)
The chemical networks used by other photochemical models in this study will
be available on Zenodo after publication.
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Methods

The Temperature-Pressure and Eddy Diffusion
Coefficient Profiles Derived from the Exo-FMS GCM

To provide inputs to the 1D photochemical models, a cloud-free WASP-39b
General Circulation Model (GCM) was run using the Exo-FMS GCM model
[16]. We assume a 10× solar metallicity atmosphere in thermochemical equilib-
rium and use two-stream, correlated-k radiative-transfer without optical and
UV wavelength absorbers such as TiO, VO and Fe, which are assumed to have
rained out from the atmosphere given the atmospheric temperatures of WASP-
39b. System parameters were taken from [4]. WASP-39b’s radius is inflated
significantly and we assume an internal temperature of 358 K, taken from the
relationship between irradiated flux and internal temperature found in [48].
Extended Data Fig. 2 shows the latitude-longitude map of the temperature
at a pressure level of 10 mbar. The input to the photochemical models are
the temperature-pressure profiles at the morning and evening limbs (Extended
Data Fig. 3), which we compute by taking the average of the profiles over all
latitudes and ± 10◦ (as estimated from the opening angle calculations from
[49]) of the morning and evening terminators (i.e., the region between the grey
curves in Extended Data Fig. 2).

Vertical mixing in 1D chemical models is commonly parameterised by eddy
diffusion. For exoplanets, the eddy diffusion coefficient (Kzz) is in general a
useful but loosely constrained parameter. For the 1D photochemical models
used in this work, we assume Kzz follows an inverse square-root dependence
with pressure in the stratosphere [e.g., 50] as

Kzz(cm2 s−1) = 5× 107

(
5bar

P

)0.5

(2)

and held constant below the 5-bar level in the convective zone. The eddy
diffusion profile generally fits the global root-mean-squared vertical wind mul-
tiplied by 0.1 scale height as the characteristic length scale from the GCM.
The resulting Kzz profile is presented in Extended Data Fig. 3.

The stellar spectrum of WASP-39

We require the high-energy spectral energy distribution (SED) of the WASP-
39 host star as input to drive our set of photochemical models. However, as
an inactive mid G-type star (Teff = 5485 ± 50 K; [51]) at a distance of 215 pc
(Gaia DR3), WASP-39 is too faint for high-S/N ultraviolet spectroscopy with
HST. In order to approximate the stellar radiation incident on WASP-39b, we
created a custom stellar SED that combines direct spectroscopy of WASP-39
in the optical (with HST/STIS G430L and G750L modes; GO 12473, PI – D.
Sing) with representative spectra at shorter wavelengths.
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Our approach to estimating the ultraviolet stellar SED was based on two
factors: 1) in the NUV (2300 – 2950 Å), where the flux is dominated by the
photosphere, we chose a proxy with a similar spectral type to WASP-39, and
2) in the XUV and FUV (1 – 2300 Å), where the stellar flux is dominated
by chromospheric, transition region, and coronal emission lines, we chose a
proxy star with similar chromospheric activity indicators and used spectral
type as a secondary consideration. In the NUV, we used HST/STIS E230M
spectra of HD 203244, a relatively active (Ca II log(R

′

HK) = -4.4 [52]), nearby
(i.e., unreddened, d = 20.8 pc; Gaia DR2), G5 V star (Teff=5480 K; [53])
from the STARCat archive [54]. While HD 203244 is a suitable proxy at pho-
tospheric wavelengths, WASP-39 is a relatively old (∼7 Gyr) star with low
chromospheric activity (logR

′

HK = -4.97 ± 0.06) and a long rotation period
(Prot = 42.1 ± 2.6 days; [51]), suggesting significantly lower high-energy flux
than HD 203244. Therefore, we elected to use a lower-activity G-type star, the
Sun, at wavelengths shorter than 2300 Å. The Sun has high-quality archival
data available across the UV and X-rays and similar chromospheric activity to
WASP-394. With the components in hand, we first corrected the observed STIS
spectra of WASP-39 for interstellar dust extinction of E(B – V ) = 0.079 [57]
using a standard RV = 3.1 interstellar reddening curve [58], then interpolated
all spectra onto a 0.5 Å pixel−1 grid. The NUV spectrum of HD 203244 was
scaled to the reddening-corrected WASP-39 observations in the overlap region
between 2900 and 3000 Å, and the XUV+FUV spectrum of the quiet Sun [59]
was scaled to the blue end of the combined SED. The flux scaling between
two spectral components is defined as ( (Fref - α × Fproxy) / σref )2 in the
overlap region, where “proxy” is the spectrum being scaled, “ref” is the spec-
trum to which we are scaling, and α is the scale factor applied to the proxy
spectrum. α is varied until the above quantity is minimized (α = 2.04×10−16

and 7.58×10−3 for the FUV and NUV component, respectively.). The final
combined spectrum was convolved with a 2 Å FWHM Gaussian kernel, and
wavelengths longer than 7000 Å were removed to avoid the near-IR fringing
in the STIS G750L mode. We show the stellar spectrum at the surface of the
star used for our photochemical models in Extended Data Fig. 3.

We compared our estimated SED for WASP-39 against archival GALEX
observations from [60], who find the NUV (1771–2831 Å) flux density to be
168.89 µJy, or an average NUV spectral flux of Fλ = 9.8 × 10−16 erg cm−2 s−1

Å−1 at 2271 Å. Correcting this value by the average extinction correction in
the GALEX NUV bandpass, a factor of 1.79, and comparing it to the average
flux of our estimated SED over the same spectral range (1.66 × 10−15 erg
cm−2 s−1 Å−1), we find the agreement between the GALEX measurement of
WASP-39 and our stellar proxy to be better than 6%.

4The average solar Ca II log(R
′
HK) value is -4.902 ± 0.063, and ranges from approximately -4.8

to -5.0 from solar maximum to solar minimum [55, 56].
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Simulated Transmission Spectra from gCMCRT

To post-process the 1D photochemical model output and produce transmission
spectra, we use the 3D Monte Carlo radiative-transfer code gCMCRT [17].

For processing 1D columns, gCMCRT uses 3D spherical geometry but with
a constant vertical profile across the globe in latitude and longitude. In this
way, spectra from 1D outputs can be computed. We process each photochem-
ical model’s morning and evening terminator vertical 1D chemical profiles
separately, taking the average result of the two transmission spectra to produce
the final spectra that are compared to the observational data.

In the transmission spectra model, we use opacities generated from the
following line lists: H2O [61], OH [62] CO [63], CO2 [64], CH4 [65], CH3 [66],
HCN [67], C2H2 [68], C2H4 [69], C2H6 [70], C4H2 [70], C2 [71], CN [72], CH
[73], SO2 [18], SH [74], SO [75], H2S [76], NO [77], N2O [77], NO2 [77], HCl
[70], Na [78], K [78].

Description of Photochemical Models

We use the following 1D thermo-photochemical models to produce the steady-
state chemical abundance profiles for the terminators of WASP-39b. All models
assume cloud-free conditions and adopt the same temperature profiles, stellar
UV flux, eddy diffusion coefficient profile (Extended Data Fig. 3), and zero-
flux (closed) boundary conditions. A zenith angle of 83 degrees (an effective
zenith angle that matches the terminator-region-mean actinic flux for near-
unity optical depth) is assumed for the terminator photochemical modelling.

VULCAN

The 1D kinetics model VULCAN treats thermochemical [47] and photochemi-
cal [14] reactions. VULCAN solves the Eulerian continuity equations including
chemical sources/sinks, diffusion and advection transport, and condensation.
We applied the C–H–N–O–S network5 for reduced atmospheres containing 89
neutral C-, H-, O-, N-, and S-bearing species and 1028 total thermochemical
reactions (i.e., 514 forward-backward pairs) and 60 photolysis reactions. The
sulphur allotropes are simplified into a system of S, S2, S3, S4, and S8. The
sulphur kinetics data is drawn from the NIST and KIDA databases, as well as
modelling [12, 79] and ab-initio calculations published in the literature [e.g.,
80]. For simplicity and cleaner model comparison, the temperature-dependent
UV cross sections [14] are not used in this work. The pathfinding algorithm
described in [81] is utilised to identify the important chemical pathways.

KINETICS

The “KINETICS” 1D thermo-photochemical transport model [28] uses the
Caltech/JPL KINETICS model [82, 83] to solve the coupled 1D continuity
equations describing the chemical production, loss, and vertical transport of

5https://github.com/exoclime/VULCAN/blob/master/thermo/SNCHO photo network.txt

https://github.com/exoclime/VULCAN/blob/master/thermo/SNCHO_photo_network.txt
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atmospheric constituents of WASP-39 b. The model contains 150 neutral C-,
H-, O-, N-, S-, and Cl-bearing species that interact with each other through
2350 total reactions (i.e., 1175 forward-reverse reaction pairs). These reac-
tions have all been fully reversed through the thermodynamic principle of
microscopic reversibility [84], such that the model would reproduce thermo-
chemical equilibrium in the absence of transport and external energy sources,
given sufficient integration time. The chemical reaction list involving C-, H-
, O-, and N-bearing species is taken directly from [85]. Included for the first
time here are 41 sulphur and chlorine species: S, S(1D), S2, S3, S4, S8, SH,
H2S, HS2, H2S2, CS, CS2, HCS, H2CS, CH3S, CH3SH, SO, SO2, SO3, S2O,
HOSO2, H2SO4 (gas and condensed), OCS, NS, NCS, HNCS, Cl, Cl2, HCl,
ClO, HOCl, ClCO, ClCO3, ClS, ClS2, Cl2S, ClSH, OSCl, ClSO2, and SO2Cl2.
The thermodynamic data of several chlorine- and sulphur-bearing species are
not available in previous literature, and we performed ab initio calculations
for these species. We first carried out electronic structure calculations at the
CBS-QB3 level of theory using Gaussian 09 ([86]) to determine geometric con-
formations, energies, and vibrational frequencies of the target molecules. Then
the thermodynamic properties of these molecules were calculated by Arkane
([87]), a package included in the open-source software RMG v3.1.0 ([88, 89]),
with atomic energy corrections, bond corrections, and spin-orbit corrections,
based on the CBS-QB3 level of theory as the model chemistry. The reaction
rate coefficients and photolysis cross sections for these S and Cl species are
derived from Venus studies [90–96], interstellar medium studies [97], Io pho-
tochemical models [98, 99], Jupiter cometary-impact models [100, 101], the
combustion-chemistry literature [102–105], terrestrial stratospheric compila-
tions [106, 107], and numerous individual laboratory or computational kinetics
studies [e.g., 108–112].

ARGO

The 1D thermochemical and photochemical kinetics code, ARGO, originally
[113, 114] utilised the Stand2019 network for neutral hydrogen, carbon, nitro-
gen and oxygen chemistry. ARGO solves the coupled 1D continuity equation
including thermochemical-photochemical reactions and vertical transport. The
Stand2019 network was expanded by Ref [115] by updating several reactions,
incorporating the sulphur network developed by Ref [13], and supplement-
ing it with reactions from Ref [116] and Ref [95], to produce the Stand2020
network. The Stand2020 network includes 2901 reversible reactions and 537
irreversible reactions, involving 480 species composed of H, C, N, O, S, Cl and
other elements.

ATMO

The C–H–N–O chemical kinetics scheme from Ref [29] is implemented by Ref
[117] in the standard 1D atmosphere model ATMO, which solves for the chem-
ical disequilibrium steady state. As of the time of writing of this article, the
sulphur kinetic scheme of ATMO, derived from applied combustion models, is
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still at the development and validation stage. Hence, for WASP-39b, we per-
formed ATMO with the C–H–N–O–S thermochemical network from VULCAN
[14] along with the photochemical scheme from Ref [15] (an update of the
native photochemical scheme from Ref [29]), with the additional 71 photolysis
reactions of H2S, S2, S2O, SO, SO2, CH3SH, SH, H2SO, and COS.

Sensitivity Tests

We examine the sensitivity of our chemical outcomes to essential atmospheric
properties using VULCAN. For models with various metallicity and C/O
ratios, we explore the sensitivity to temperature and vertical mixing by sys-
tematically varying the temperature-pressure and eddy diffusion coefficient
profiles. Specifically, the temperature throughout the atmosphere is shifted by
50 K and the eddy diffusion coefficients are multiplied/divided by 10. These
variations span a range comparable to the temperature differences among
radiative transfer models [118] and the uncertainties in parameterising verti-
cal mixing with eddy diffusion coefficients [119, 120]. Regarding our choice of
internal heat, we have further conducted tests with different internal temper-
atures and found the compositions above 1 bar are not sensitive to internal
temperature, because the quench levels of the main species are at higher lev-
els given the adopted eddy diffusion coefficient. We have also verified that the
temperature above the top boundary of the GCM (∼ 5× 10−5 bar; Extended
Data Fig. 3) does not impact the composition below.

Sensitivity to C/O is summarised in Extended Data Fig. 5 where the nomi-
nal model has a C/O ratio of 0.55 as in the main text. The averaged abundance
of both SO2 and H2O in the pressure region relevant for transmission spectrum
observations show similar dependencies on C/O, decreasing by a few factors
as the C/O increased from sub-solar (0.25) to super-solar (0.75) values. The
averaged abundance of SO2 is not too sensitive to temperature and vertical
mixing either, except for C/O = 0.75 where the SO2 concentration is ∼ ppm
level, similar to what is found in Figure 4.

Finally, we performed sensitivity tests to the UV irradiation – the ultimate
energy source of photochemistry. We first tested the sensitivity to the assumed
stellar spectra by performing the same models with the solar spectrum (close
to WASP-39) and found negligible differences in the photochemical results.
Since the UV spectrum shortward of 295 nm is constructed from stellar proxies
rather than directly measured, we then focused on varying the stellar flux in
the FUV (1–230 nm) and NUV (230-295) separately. Fig 8 shows that the
resulting sulphur species abundances are almost identical when the UV flux
is reduced by a factor of 10, broadly consistent with what [12] suggested that
the photochemical destruction of H2S only becomes photon limited when the
stellar UV flux is reduced by about two orders of magnitude (for a directly
imaged gas giant). On the other hand, while SO and SO2 are not sensitive
to increased NUV, they are significantly depleted with increased FUV. This
is owing to that the photodissociation of SO and SO2 mainly operates in the
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FUV, and the enhanced FUV can destroy SO and SO2, even with the same
amount of available OH radicals.

Spectral effects of assuming a vertically uniform SO2

distribution

Minor species commonly have VMR varying with altitude in the observable
region of the atmosphere, especially those produced or destroyed by photo-
chemistry. Figure 9 demonstrates that assuming a vertically-constant VMR of
SO2 can lead to underestimating its abundances by about an order of mag-
nitude. This is verified by comparing the column-integrated number density
from the pressure level relevant for transmission spectroscopy. For example,
the terminator-averaged column-integrated number density of SO2 above 10
mbar by VULCAN is about 1.4 × 1019, which is equal to a vertically uni-
form SO2 with a concentration around 4 ppm. Hence modelling frameworks
that assume vertically uniform composition should be treated with caution
and would benefit from comparisons with photochemical models, especially for
photochemical active species that can exhibit large vertical gradients.

Opacities of sulphur species

The opacities of sulphur species illustrated in extended data Fig. 7 are com-
piled from UV cross sections and IR line lists. The room-temperature UV
cross sections are taken from the Leiden Observatory database [121]6. The IR
opacities include SO2[122], H2S[123], SH[124], CS[125], and a newly computed
high-temperature line list for SO[126]. The opacity from OCS[127] is currently
only available up to room temperature, hence its coverage is likely incomplete
in our region of interest.

6http://home.strw.leidenuniv.nl/∼ewine/photo

http://home.strw.leidenuniv.nl/~ewine/photo
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Extended Data Fig. 1 Simulated mixing ratio profiles for a few select chemical
species in the atmosphere of WASP-39b under the assumption of thermochemi-
cal equilibrium. The volume mixing ratios of H2O (blue), CO2 (orange), H2S (green), and
SO2 (red), as computed by FastChem [128] based on the morning terminator temperature
profile, are given for 10 × (solid) and 100 × (dashed) solar metallicity.
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Extended Data Fig. 3 1D Photochemical model input. Left: 1D Temperature-
Pressure profiles adopted from the morning and evening terminators averaging all latitudes
and ± 10◦ longitudes (grey-line enclosed regions in Fig. 2) and the global Kzz profile
(Equation (2) and held constant below the 5-bar level). The temperatures are kept isother-
mal from those at the top boundary of the GCM around 5 × 10−5 bar when extending to
lower pressures (∼ 10−8 bar) for photochemical models. Right: Input WASP-39 stellar flux
at the surface of the star. The pink shaded region indicates the optical wavelength range
where the stellar spectrum is directly measured, whereas the blue and green shaded regions
are those constructed from the Sun and HD 20324, respectively.
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toire Lagrange, Nice, France.
12Institute of Astronomy, University of Cambridge, Cambridge, UK.
13Jet Propulsion Laboratory, California Institute of Technology, Pasadena,

CA, USA.
14Division of Geological and Planetary Sciences, California Institute of

Technology, Pasadena, CA, USA.
15School of Physics, University of Bristol, Bristol, UK.
16Department of Astronomy & Astrophysics, University of California,

Santa Cruz, Santa Cruz, CA, USA.
17Department of Astronomy & Astrophysics, University of Chicago,

Chicago, IL, USA.
18Department of Physics and Institute for Research on Exoplanets, Uni-
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